

Precious Metals Refining: A Pathway To A Sustainable Future

Samuel Ho

Group Head of Precious Metals Management at ABC Refinery

WHAT IS SUSTAINABILITY?

Environmental

- Waste Generation
- Energy Consumption
- Carbon & Water Footprint

Social

- Employee Well-being
- Community Engagement
- Health & Safety Standards

Governance

- Ethical Sourcing
- Anti-Corruption Policies
- Sustainability Reporting

CARBON FOOTPRINT

- Total greenhouse gas emissions caused directly or indirectly by a company
- Measured in tonnes of carbon dioxide equivalents (CO₂e)
- Gold industry emissions estimated to be 126 million tonnes CO₂e in 2017
- 53.8 billion tonnes of CO₂e were emitted globally in 2023
- Australia's net zero emissions target by 2050

HOW DO WE QUANTIFY?

SCOPE ONE

Direct Emissions

Emissions from sources owned or controlled by the

company

SCOPE TWO

Indirect
Emissions

Emissions generated
by purchasing
electricity consumed by
the company

SCOPE
THREE
>99%

Indirect
Emissions

All other emissions
generated from sources
not owned or controlled
by the company

METHODS FOR REDUCING CARBON FOOTPRINT

- Review and optimise existing processes
- Reduce consumable and chemical usage
- Utilising renewable energy sources
- Improving energy efficiency
- Reducing waste
- Support green technologies and sustainable practices

STORY AS REFINERS

- Refining methods are similar for most refiners globally
- Refining precious metals relies heavily on chemicals
- Aqua Regia, Miller Process (Chlorination), Electrolytic **Gold Refining**
- Chemical usage contributes to the carbon footprint and waste generation

PROCESS OVERVIEW - TRADITIONAL

Miller Process (Chlorination):

- Flexible Can deal with a wide range of impurities
- Scalability Easily expandable with equipment changes
- **Efficient** More chlorine means more reaction
- Forms chloride byproducts
 - Requiring further chemical treatment
 - Generates additional waste during recovery
- Safety considerations Chlorine is hazardous

PROCESS OVERVIEW - RECENT

AcidLess Separation (ALS):

- Works by vacuum distillation and condensation
- Dependant on vapour pressures between metals
- Using electricity (can be sustainably sourced)
- Without the use of chemicals
- High Ag metallic condensate
 - Reduces chemical treatment processes

SUSTAINABLE REFINING - BENEFITS

- Reducing operational costs
- Reducing chemical footprint
- Reducing waste generation
- Reducing carbon footprint
- Safer working environments with less hazardous materials

CONSIDERATIONS OF ALS REFINING

- Refining capacity is confined by ALS condenser size
- Potential of extracting more Au than intended into the Ag condensate
- Challenges in fully separate certain base metals (Fe, Cu, etc.)
- Reliance on downstream processes to remove impurities
- Highlights challenges of eliminating Miller Process (Chlorination)
- The combination of both technologies provides flexibility and reduces carbon footprint

THE PATHWAY TO A SUSTAINABLE FUTURE

Questions?

abcrefinery.com