

FOR GOLD AND SILVER
MILLIGRAM BEADS
FROM LOW GRADE
MATERIAL

MADELEINE THERON

18 MARCH 2025

SMELTER PROCESS

PROCESS

Single site Refinery and Smelter process

>100 different type of material throughput

Gold range 1 to >15 000 g/t

Silver range 1 to >27 000 g/t

Physical Sample throughput >10 000 due to dual stream analysis

OVERVIEW

Publications since 1940

Used synthetic gold and silver alloys

Synthetic alloy use not always feasible due to costs and time

- Controlling factors in the assay of silver by cupellation,
 C.W Relly (1940)
- An evaluation of the accuracy of the fire assay process when applied to the assay of low value residue samples, *W. A Sinclair* (1964)
- The determination of gold losses in the fire assay method, Siegfried Gerhard Wall (1972)
- The determination of losses in the fire assay of gold cupellation and parting losses (1973)
- A manual on fire assaying and determination of the noble metals in geological materials, *V.E McKelvey, director* (1977)
- Assay and analytical practice in South African mining industry, W.C Lenahan & R. de L. Murray- Smith (1985)
- The experience of cupellation in fire assay analysis, *Decent Group* (2021)

CUPELLATION PROCESS

- Heating the sample inside preheated cupels
- Main goal separate precious metals from lead
- Lead oxidized to molten litharge
- Molten precious metals not absorbed
- Base metals absorbed by the cupel
- Gold and other noble metals-bead

WHY LOSSES OF NOBLE METALS

- Silver is more rapidly oxidized than gold, therefore cupellation losses affects silver more than gold due to absorption and volatilization
- Loss of gold is less of a problem because it is oxidised far less rapidly than silver in normal process

"Where did my silver go?"

FACTOR AFFECTING LOSSES

- EXTRACTION AIRFLOW
- •TYPES OF ALLOYS
- CUPEL SELECTION
- •TEMPERATURE AND TIME CONTROL
- ANALYST

TEST PROTOCOL

The validation criteria included:

Temperature variation (± 10°C)

Cupel size variation (Size 9 & 10)

Lead button mass variation (40-70g)

Gold alloy variation (0-670mg)

Silver alloy variation (0-2000mg)

Addition of copper as an impurity (0-40mg)

Different analysts and different cupellation furnace

GOLD LOSSES

Factor established within linearity of
0.9968

• Gold recovery >99.6%

 Gold recovery did not change significantly by adjusting the validation criteria in a controlled manner

GOLD LOSSES

Factor established within linearity of
0.969

• Silver recovery >96.3%

• Silver recovery did not change significantly by adjusting the validation criteria in a controlled manner, however the losses is more erratic and not as linear as with the gold losses

AG LOSSES DETAIL

10

COMPARISON OF RESULTS (AU)

SUMMARY REPORT (MULTIPLE LABS)

SUMMARY REPORT (MULTIPLE LABS) & NEW FACTOR

SUMMARY REPORT ORG VS FACTOR (SINGLE LAB)

Average = 727 g/t Z score < 1.0

Z SCORE (MULTIPLE LABS)

© Copyright 2019 Rand Refinery confidential

Average = 728 g/t Z score < 1.0

Z SCORE (ALL)

Abs diff = 2 g/tResults = middle quadrant

OUTLIER PLOT (ALL)

COMPARISON OF RESULTS (AG)

SUMMARY REPORT (MULTIPLE LABS)

SUMMARY REPORT (MULTIPLE LABS) & NEW FACTOR

Average = 7063 g/t Most Z score < 1.0

© Copyright 2019 Rand Refinery confidential

Average = 7078 g/t Most Z score < 1.0

Z SCORE (ALL)

Abs diff = 96 g/t Results = middle quadrant

OUTLIER PLOT (ALL)

4681 data points

Overall average of difference = 2.05

Mean = 1.07

>97% of difference lies within ±10g/t

Au range reviewed

1 g/t to 14285 g/

4681 data points

Overall average of difference = 1.63

Mean = 0.69

>90% of difference lies within ± 20g/t

Ag range reviewed

1 g/t to 27 100 g/t

CONCLUSIONS

Within controlled process environment the combined absorption and volatilisation losses are within a linear relationship

Gold losses is significantly lower than Silver

Factor established for both Au & Ag that shows no significant difference compared to other refineries and synthetic control approach

ACKNOWLEDGEMENTS

THANKYOU