

Role of Sample Preparation in Spectroscopic analysis of Metal Samples

Pankaj Deshmukh

LBMA Assaying and Refining Conference London, 17 Mar 2025

Contents

- Introduction
- Objectives
- Challenges in Sample preparation
- Sample preparation for Spark/ICP/XRF
- Conclusion
- Thanks

Introduction

Sample Preparation

Introduction

- One of the three major aspects
- Preliminary step in the analytical process
- > Isolating and concentrating the analytes of interest while removing interferences.
- Essential for Accuracy, reproducibility, sensitivity
- > High-quality & reliable data in any analytical workflow.

Objectives

Objectives

- > Importance of metal sample preparation for spectroscopy analysis.
- Problems associated with sample preparation
- > Techniques involved in sample preparation
- Best possible practices to ensure reliable results.
- Conclusion

Challenges in Sample Preparation

Challenges

- ➤ General Metal sample preparation
- >Two challenges-
 - 1) Dealing with sample variability
 - 2) Reproducibility issues.
- ➤ Quality and consistency of the sample
- ➤ Sampling plan and sample preparation
- ➤ Surface contamination
- ➤ Unstandardized sample preparation procedures

Fig-1

Challenges – Disadvantages of Sample preparation

- > The physical and chemical changes that samples undergo during preparation.
- Key issues include :
- Contamination Risks
- Loss of Volatile Compounds
- Sample Degradation
- Compatibility for acid dissolution
- Thermal Effects
- Time and Labor Intensive
- Cost Implications: Environmental and Safety Concerns

Sample Preparation- Spark OES

Sample preparation in Spark OES

- > The secret of perfect OES analysis: SAMPLE PREPARATION
- Homogeneous Samples
- > Representative and with an even surface
- Morphology of the solidification and cast structure of the sample
- Use of Spark Stand and contamination of electrode

Pictorial presentation samples for Spark OES

Graphical representation for differences

Standard Deviation for Impurities by Spark					
Elements	As it is	Improper	Proper milled		
Au	0.0064	0.0049	0.0046		
Ag	2.73	2.18	1.95		
Cu	1.66	1.29	1.07		
Sb	0.00	0.69	0.00		
Bi	0.00	0.87	0.00		
Se	0.00	2.21	0.00		
Sn	0.00	0.53	0.00		
Te	0.00	0.55	0.00		

Concentration of Impurities in ppm by Spark

Elements	Nominal	As it is	Improper	Proper milled
Ag	875	889.01	870.55	874.30
Cu	55	51.88	57.75	54.18
Au(‰)	999.07	999.053	999.034	999.073

Graph-2 Concentration of Impurities for Ag-Cu by Spark in ppm

Best practices for Sample prep for Spark OES

- > The homogeneity
- > Flat surface
- Smooth surface
- Surface pollution
- Physical evaluation at the time of sampling
- > The best way-lathes and milling machines.

Sample Preparation- ICP OES

Sample preparation Techniques _ICP

- Crucial step
- > Common sample preparation techniques include:
- Sample Digestion:
- Dilution and Filtration:
- Other Pre-concentration Methods:
- Factors Influencing Sample Preparation
- Sample Type and Matrix Composition:
- Desired Analytical Sensitivity:
- Sample Throughput and Automation:
- Safety Considerations:
- Instrument Compatibility:
- Matrix Interference: Sample Homogeneity: Contamination Control:

Pictorial presentation samples for ICP OES

Graphical representation of impurities differences in ppm

Concentration of Impurities by ICP - MWD							
Sample prep method-Elements	Ag	Cu	Fe	Sn	Zn	Pd	Pt
MWD-Improper	1050	202	55	25	65	192	105
MWD-Proper	987	189	10	10	57	189	94
Difference(ppm)in both methods	63	13	45	15	8	3	11
Nominal Value(ppm)	1000	200	15	19	49	196	96

Concentration of Impurities by ICP-Acid Digestion							
Sample prep method-Elements	Ag	Cu	Fe	Sn	Zn	Pd	Pt
Acid Digestion- Improper	1283	162	65	0	71	125	99
Acid Digetion- Proper	1024	192	12	22	35	189	90
Difference(ppm)in both methods	259	-30	53	-22	36	-64	9
Nominal value(ppm)	1000	200	15	19	49	196	96

Best practices for Sample prep for ICP OES

- Critical aspect of ICP-OES analysis
- > Sample integrity and control of contamination
- Handling & Storage
- Cross contamination
- Dilution & Filtration-matrix matching
- Sample homogeneity
- High-grade material and cleaning

Sample Preparation-XRF Spectrometer

Sample preparation in XRF

- Quality of the sample preparation technique
- Analysis errors of metal samples come from :
- 1) Internal segregation,
- 2) Defective surface,
- 3) Surface roughness and uneven surface,
- 4) Surface transformation,
- 5) Metallurgical history
- > An ideal sample is prepared so that it is:
- 1) Representative of the material
- 2) Homogeneous
- 3) Thickness

Pictorial presentation samples for XRF Spectroscopy

Why to have smooth flat surface?

- > Imperfections in the surface shadow effect
- Polishing striations give rise to the so-calledshielding effect

- ➤ Surface Roughness: Figure-2 shows different sample surface due to different grinding/milling conditions (A) is coarse, and(B) is fine
- > X-ray intensity of (B) is stronger than (A) from the diagram

Fig.2

Graphical representation for differences

Standard Deviation for Alloy Impurities by XRF						
Element	As it is	Buffing	Milled			
Au	0.641	0.227	0.028			
Ag	0.560	0.300	0.034			
Cu	0.641	0.071	0.028			
Zn	0.183	0.024	0.031			
Pb	0.029	0.007	0.004			
Ni	0.307	0.003	0.001			
Cr	0.143	0.000	0.000			
Fe	0.604	0.000	0.000			

Concentration Impurities in % for Alloy by XRF							
Elements	Nominal	As it is	Buffing	Milled			
Au	22.09	22.017	22.129	22.106			
Ag	75.60	73.758	75.750	75.586			
Cu	1.96	2.330	1.793	1.940			
Zn	0.15	0.258	0.113	0.161			
Pb	0.10	0.054	0.101	0.109			

Best practices for Sample prep for XRF

- ➤ Having a foreign deposit or a blot on the analysis surface is not suitable for accurate analysis.
- > Surface treatment of metal sample:
 - 1. Roughness of surface and surface grinding
 - 2. Change of component and structure, and analysis position
 - 3.Contamination
 - 4. Storage of sample and time of surface renewal

Conclusion

Conclusion

- > Sample preparation is a critical aspect.
- > Significant impact on accuracy, precision and reliability of results
- Primary inspection is important
- Understanding and following best practices

Acknowledgment

Acknowledgment

Valuable support and guidance

- Ms.Barbara Badiello, Head of Laboratory, MKS PAMP
- Mr. Ankur Goyal, President(works) MMTC-PAMP India.
- Mr. Mike Hinds, PhD

Practical Ground support

- Mr. Amit Kumar Instrumentation Lab-Spark OES
- Ms. Sakshi Bhagat Instrumentation Lab-ICP OES
- Mr. Amit Solanki Recovery and XRF Team

Bibliography

- © Hitachi High-Tech Analytical Science, 2024 Guide Optimal Non-Ferrous Melt Control with SPARK OES
- Rigaku Journal, 32(2), 2016
- The role of sampling procedures in solid high fineness precious metals analysis-paper presented by M. Genel at A&R conference 2011
- "Introduction to X-ray Fluorescence Analysis (XRF)." © 2000 2006 Bruker AXS GmbH, Karlruhe, West Germany-Guide to XRF basics
- How to Prepare Metal Alloy Samples for Analysis by XRF by Kim Halkiotis

30 MMTC-PAMP

THANK YOU