

Analytical Services

a division of Sheffield Assay Office

Dr Belen Morales

March 2019

Outcome

Precious Metal Reclamation at SAO

Chemical Composition of Dental Scrap

Melting, Sampling and Assaying

Case Study

Conclusions

Reclamation of Precious Metal Scrap

Analytical Service Business Scope

Melts and assays 25-50kg of scrap per week (20-40 melts)

Composition varies widely from one melt to another

Segregation within each melt likely to occur

Customer requirements

Chemical Composition: Dental Alloy Classification

SSUU

	Precious Metal Alloys	Semi-Precious Metal Alloys	Base Metal Alloys
Au<45% is replaced by Pd Pd>10% gives to alloy white colour	Gold-based • Au, Pd, Pt ≥ 75% • Au 80%-45%; Pd 1-40% • Ag 25%-5%; Pt, In, Ir, Cu, Zn, Sn	Low Gold • Au, Pd, Pt (25%-75%) • Au <20% ; Pd ~20% • Ag <40%; In, Ir, Cu, Zn, Sn, Ru, Co	Co 50%-70% and Cr 25%-35% • Co-Cr-Mo-Si-Mn • Co-Cr-Mo-w-Si • Co-Cr-Mo-Ti
SHEFFIELD	Palladium-based • Au, Pd, Pt ≥ 75% (most Pd with Ag)	Silver-based • Ag-Pd (with/out Cu)	Ni 60%-80% and Cr 10%-30% • Ni-Cr-Mo-Si • Ni-Cr-Mo

Dental Waste Composition Tested

Other element contents: Porcelain (SiO2,Na2O,Al2O3, K2O) 60% Ni 15% Sn 2%	Class 1 Au ~45%; Pd ~5% • Ag ~30%; Pt<0.5%	Class 2 Au ~30%; Pd ~5%% • Ag ~15% ; Pt<0.5
Cr 8% Co 4% Cu 5% Mo 5% In 1%	Class 3 • Au <15%; Pd ~35% • Ag ~20% ; Pt<0.5	Class 4 • Au <7%; Pd ~20% • Ag ~7% ; Pt<0.5

Melting Dental Scrap

Furnace and Crucibles

- Induction furnace
- Clay graphite crucible / Zirconium crucible
- At least 2 steps melting process

Fluxes and Additives

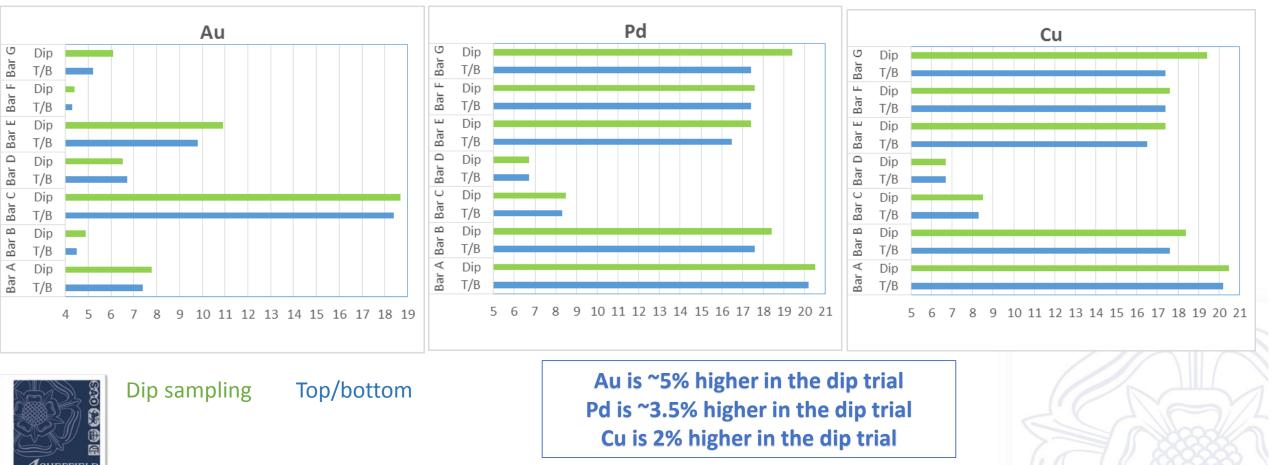
- Borax (Na2B4O7)-scrap (1:1)
- CaF2-Borax (1:5)
- Cu metal/CuO:10-200%

Casting and Cleaning

Drying and Weighing

Sampling Dental Bars

Methods:


- Dip Sampling . A quartz tube of 6mm diameter is used to extract ~50mm length of molten metal (any nonmetallic layer is excluded from the test portion). The portion is flattened to facility further acid extraction.
- Drilling Sampling. Three drilling portion minimum are taken from opposite corners of the top and bottom sides. Drills from different bar sides are analysed separately.

	Au			Pd		Cu			
Top (%)	Bot (%)	Dif (%)	Тор (%)	Bot (%)	Dif (%)	Тор (%)	Bot (%)	Dif (%)	
32.89	32.13	2.3	3.3	3.21	2.8	42.2	41.6	1.5	
7.09	7.63	7.3	19.54	20.77	6.1	34.7	36.2	4.2	
4.48	4.48	0.0	4.91	4.92	0.2	14.3	14.3	0.0	
46.73	47.09	0.8	17.55	17.62	0.4	35.8	35.7	0.4	
18.54	18.27	1.5	8.28	8.31	0.4	58.1	58.3	0.3	
4.03	4.64	14.1	16.1	18.6	14.4	49.6	44.2	11.5	
4.68	4.92	5.0	13	13.1	0.8	43.2	42.6	1.4	

Sampling Dental Bars: Comparison dip vs top/bottom

Assaying Dental Bars

Analytical techniques

- Cupellation Au: Au content above 10%
- ICP-OES Pd, Pt, Au (<10%)
- Potentiometric with H2SO4/HNO3 or XRF- Ag (>1%)

		Compar	ison betw	een two A	nalytical T	Fechniques	for Au (%)			
Cupellation	31.81	47.93	18.52	24.77	21.88	23.09	23.54	24.18	20.46	23.09
ICP-OES	31.97	46.91	18.40	24.04	22.06	22.22	21.89	24.07	20.20	23.00

Other PM contents for material studied above <10%

Case Study BARI Bottom 2831719 t158 \$3170 V Top

BAR II Middle A

Analytical Services Division

Original Cher	nical compos	ition
	BAR I	BAR II
(%)	10.7	4.8
(%)	12.8	7.9
(%) (%)	30.9	23.7
(%)	0.76	0.39


Ag

Au

Pd

Pt (

BAR DIMENSIONS ~2.5Kg 160mm*65mm*35mm

Case Study

BAR I: Precious metal contents (%) in each section and compared with original											
	Ag Au Pd										
	Тор	Bot	Aver	Тор	Bot	Aver	Тор	Bot	Ave		
Part A	2.7	16.8	9.7	5.52	15.4	10.5	21.6	34.9	28.3		
Part B	3.5	16.1	9.8	5.78	5.78 15.6 10.7	21.4 34.5 28.0					
Part C	2.2	15.0	8.6	5.22	15.6	10.4	21.5	35.3	28.4		
Avg ABC	Avg ABC 9.4 10.6 28.2										
Avg original											

BAR II: Precious metal contents (%) in each section and compared with original									
		Ag			Au			Pd	
	Тор	Bot	Aver	Тор	Bot	Aver	Тор	Bot	Ave
Part A	7.6	22.9	15.2	5.5	15.4	9.8	21.6	34.9	25.1
Part B	6.4	18.4	12.4	5.8	15.6	9.0	21.4	34.5	24.8
Part C	7.8	15.7	11.8	5.2	15.6	9.0	21.5	35.3	24.6
Avg ABC 13.1 9.3 24.8									
Avg original		4.8			7.9			23.7	

There is a clear differences in all PM contents between top and bottom sides

Bottom side shown generally higher content on PM

There is not clear content trend between original and section comparison

Case Study

BAR I and II	PM content	ts (%) afte	r being re-i	melted
with 50% Cu				-
		_		

	Ag		Au	-	Pd	-	Pt	_
	Тор	Bot	Тор	Bot	Тор	Bot	Тор	Bot
BAR I	7.71	6.00	7.99	6.98	21.2	18.4	0.41	0.48
BAR I (avg)	6.	86	7.49		19.80		0.45	
BAR II	6.29	5.63	4.87	4.73	16.0	15.5	0.27	0.27
BAR II (avg)	5.	96	4.	80	15	.75	0.	27

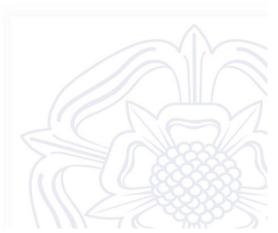
Addition of Cu improves homogeneity significantly but does not solved completely due to variation in chemical composition of dental scrap

BAR I Total PM weight in gr									
Weight Ag Au Pd Pt									
Original as sold	2084.5	223	267	644	9.6				
Avg ABC	2052.0	192	216	509	6.6				
Bar with 50% Cu	3010.8	207	226	596	13.5				

BAR II Total PM weight in gr									
	Weight	Ag	Au	Pd	Pt				
Original as sold	1833.2	87.3	177	434	7.1				
Avg ABC	1804.0	237	171	477	6.0				
Bar with 50% Cu 2693.7 161 129 424 7.3									

Conclusions

To achieve a Homogenous dental bar is challenging as there is significant difference in nature from dental scrap melt to another


Physical separation of metal likely after melting

Dip sampling seems to produce slightly higher results than average between top/bottom sampling

Acid extraction follow by ICP-OES analysed seems to give lower result to fire assay

Addition of Cu/ CuO helps significantly to produce an homogenous material

Thank you very much

Dr Belen Morales

moralesb@assayoffice.co.uk Tel: 07725657428

