

Ultra-fast Inclusion Analysis with the ARL iSpark **Optical Emission Spectrometer**

FNTIFIC

A new tool for quality control of precious metals

Jean-Marc Böhlen, Kaizhen Li and Aurelio Oriana

LBMA Assaying and Refining Conference 2023 London Hilton Tower Bridge, 12 – 15 March 2023

The world leader in serving science

Introduction

Collaboration with MKS PAMP, Barbara Badiello and Ilaria Cereghetti

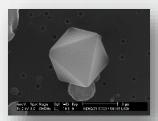
- MKS PAMP needed an efficient analysis of inclusions that are critical for a customer purchasing a high-grade gold product
- SEM/EDX analyses outsourced until then not satisfactory
 - Not fully representative
 - · Only performed on product lots to be sent to the customer
 - Analysis results after several days
- MKS PAMP asked us to develop a method for their existing ARL iSpark allowing to
 - Evaluate type and quantity of inclusions
 - Ensure delivery of product with the minimum critical inclusions

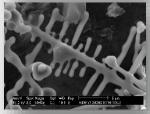
Topics

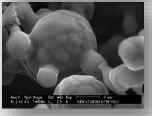
Application in Fine Gold / Collaboration with MKS PAMP

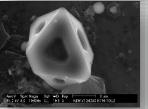
³ Potential for Applications in Precious Metals

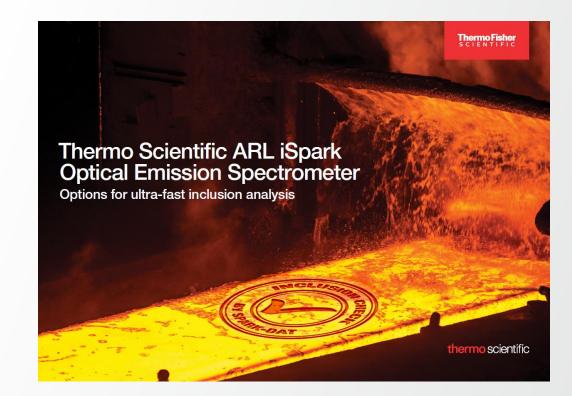
Concluding Remarks




Ultra-fast Inclusion Analysis


Inclusions

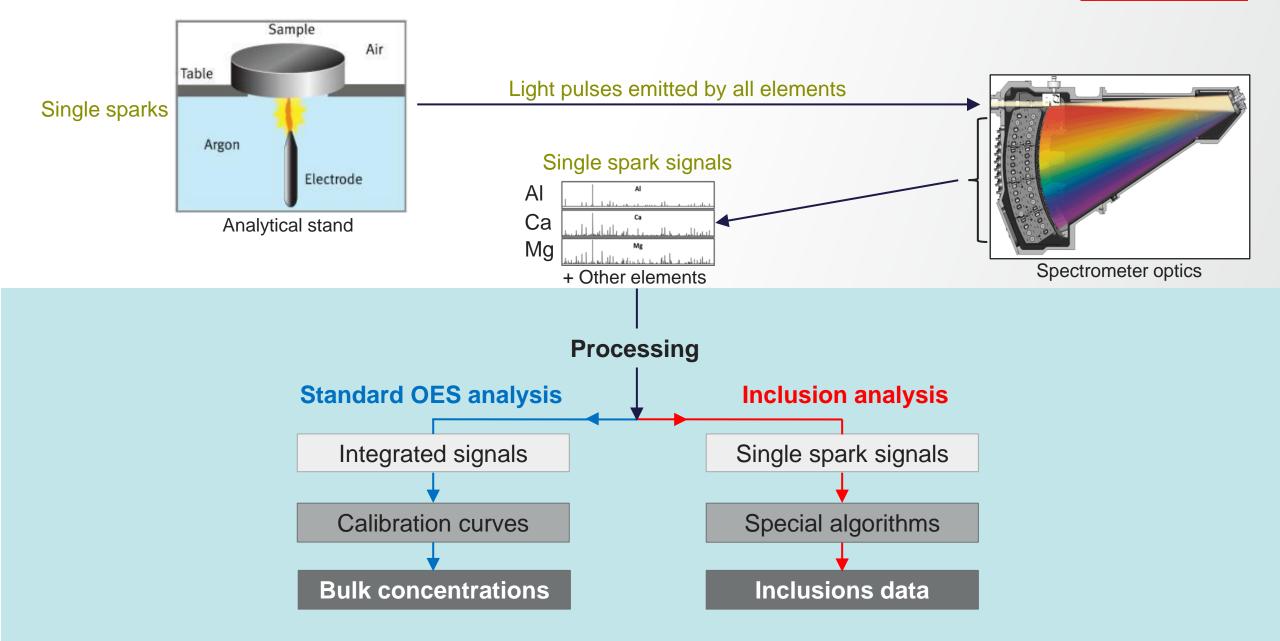

- Small particles embedded in the metal matrix
- Large variety of compositions, structures and morphologies
- In many cases : critical !
 - 1. Can be detrimental to metal properties, responsible for defects or failures of the final product
 - 2. Can cause complaints or rejection of products by customers
 - 3. Can cause process issues

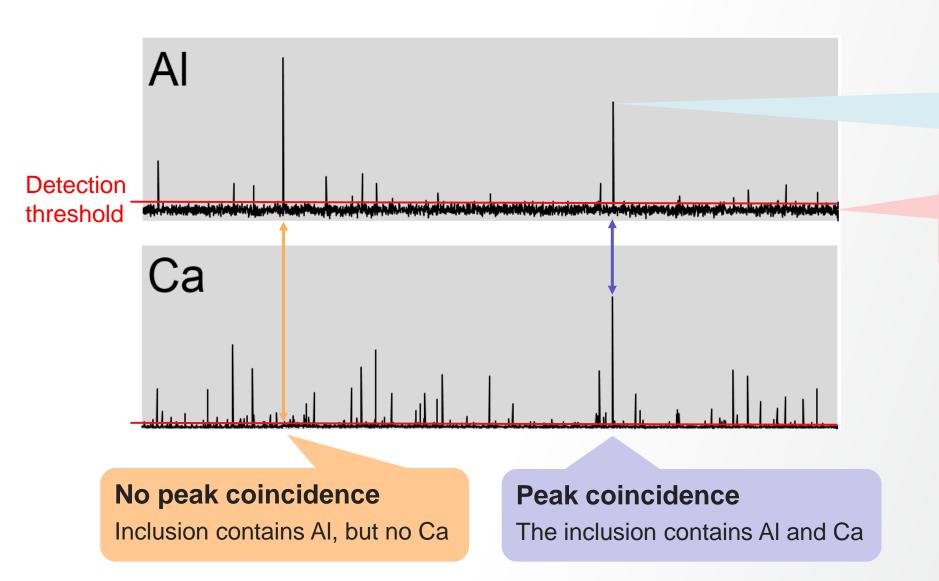


R. Dekkers et al., Metallurgical and Materials Transactions B, Vol. 24BB, 2003, No. 2, 161-171

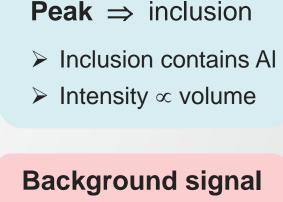
Ultra-fast Inclusion Analysis

MKS PAMP


- Spark-DAT inclusion analysis is used by steelmakers since over 20 years
- Allows
 - · Fast check of inclusions in the process
 - Dedicated analyzers too slow (e.g., SEM/EDX)
 - Very significant savings


In steel, checking inclusion contents in production saves up to 1 Mio \$ per year

How does it work?



How does it work ?

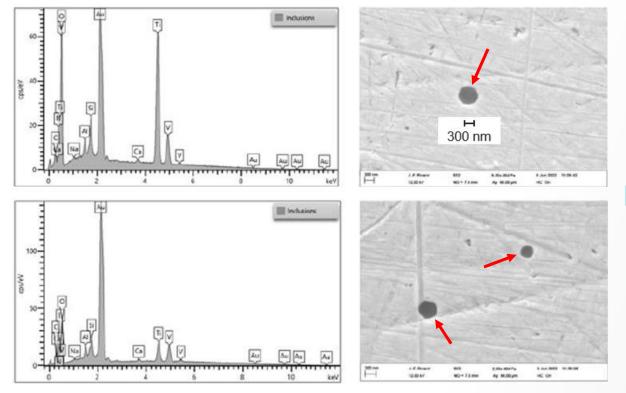
Thermo Fisher

 \Rightarrow Matrix content

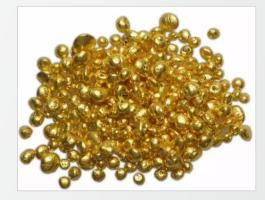
Special data treatments deliver inclusions data

- Type / composition
- Number

•


- Size / size distribution
- Concentration

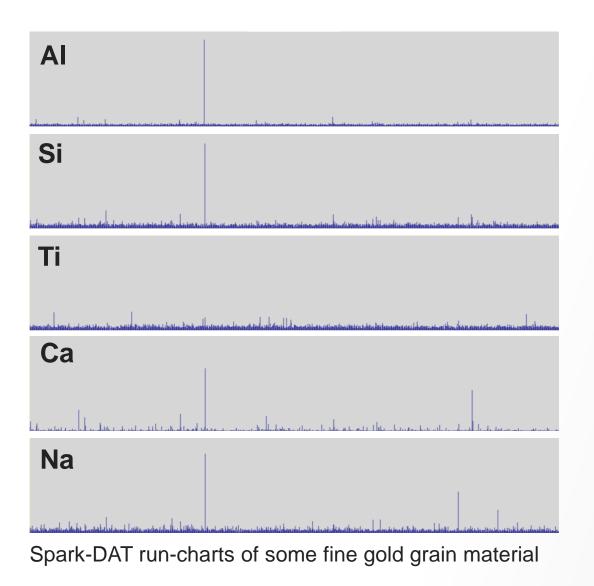
Application in Fine Gold / Collaboration with MKS PAMP


Origin of MKS PAMP's Need

 A customer of MKS PAMP complained that some high-grade gold grains supplied by MKS PAMP contained inclusions creating visual defects in gold alloy products made from these grains

SEM/EDX analyses performed by the customer on grains

Thermo Fisher



Oxide inclusions

- Main elements:
- Minor elements:
- Morphology:
- Size:
- Density:

- Si, Al and Ti Ca and Na spherical 0.2 to 1 µm
- 3 particles / mm²

Can Spark-DAT Measure These Critical Inclusions ?

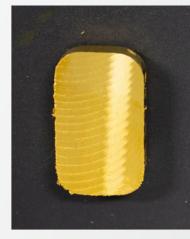
• Peaks observed on run charts of main and minor inclusion elements !

Samples

9 samples from melts of 4 production batches

• Spark OES analysis (8 runs)

			Conce	entratio	n [ppm]		
Batch	Melt	Sample	AI	Si	Ti	Au%	
1	1	1-01 M	0.3	0.7	0.2	99.996	
	2	1-02 M	0.5	0.5	0.5	99.996	
2	1	2-01 M	0.6	0.7	0.6	99.997	
	2	2-02 M	0.4	0.4	0.6	99.993	
	5	2-05 M	0.3	0.3	0.2	99.992	
	6	2-06 M	0.4	0.4	0.5	99.998	
3	11	3-11 M	0.2	0.3	0.0	99.992	 Ideal case for inclusion analysis !
	12	3-12 M	0.3	0.4	0.8	99.997	 AI, Si and Ti < 1ppm in all the samples
4	1	4-01 M	0.3	0.6	0.2	99.996	


High likelihood of obtaining quantitative results on critical inclusions for the customer

Practical Details

- Sampling
 - · Gold sampled in melt
 - Before pouring grains
 - Casted in graphite mold
- Surface preparation: milling machine
- Combined inclusion and elemental analysis
 - 4 runs (measurements)
 - Total analysis time : 2-3 minutes
- Inclusions evaluated in 0.14mm³
 - Equivalent to 2.6mg gold
 - Sparked surface: 0.28 cm²

Milling machine

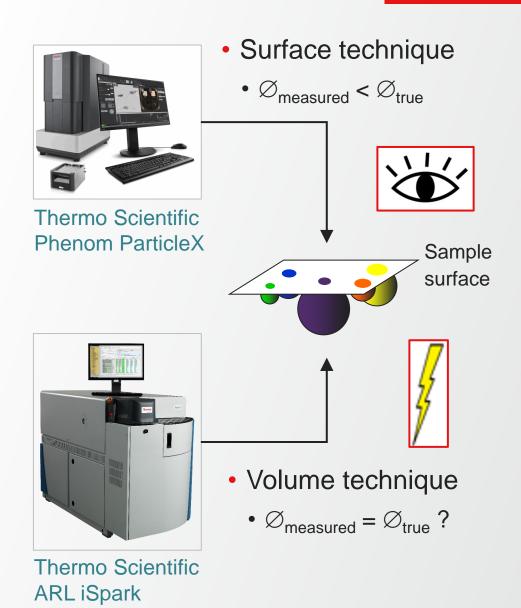
Milled sample

Casting in a mold

Sampling

in melt

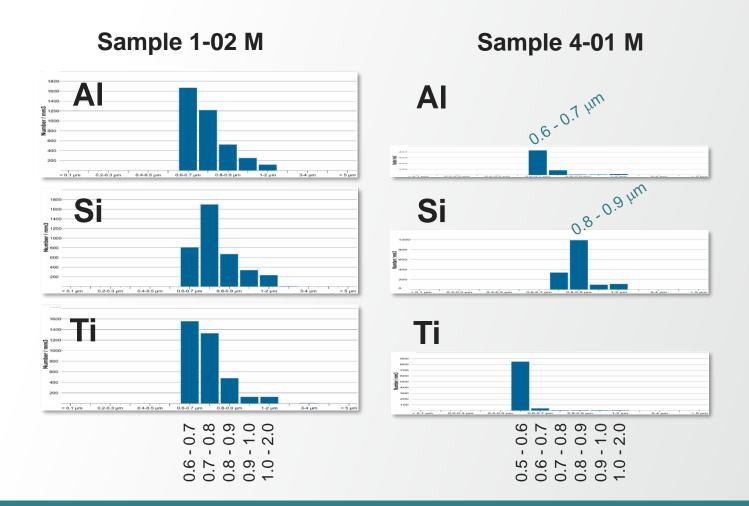
Chilling


Sample after analysis

Thermo Fisher

Validation of the Method

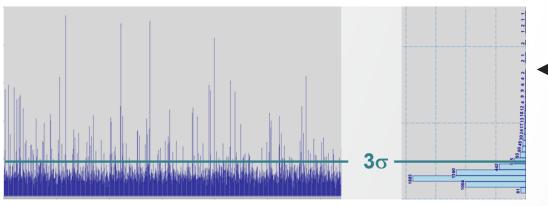
Spark OES data vs. SEM/EDX data


- Inclusions measured under very different principles
 - Comparison of results not always straightforward !

Validation of the Method

Size distribution

- ESD in μm
 - Equivalent Spherical Diameter
 - Diameter of the sphere having the mass measured with Spark-DAT
- Distribution shows clear differences of inclusion populations in the samples
 - Sample 4-01 M has fewer and smaller inclusions than sample 1-02 M

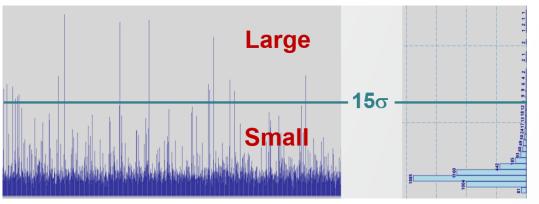


Data agree well with SEM/EDX data → Good validation of the method !

Data for Routine Inclusion Assessments

Total number of inclusions

- All signals above noise are counted
 - Threshold at 3σ


Al intensity run-chart and distribution in sample 1-02 M

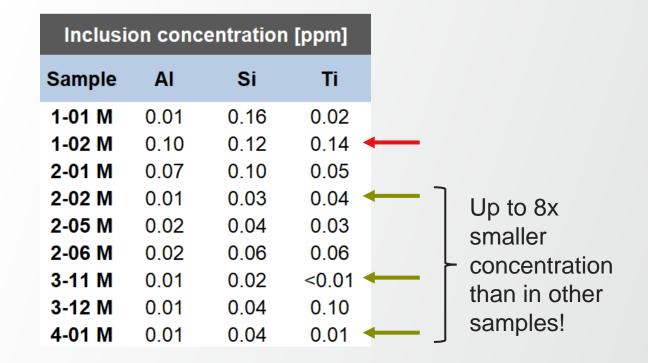
	Total n	umber o					
	Sample	AI	Si	Ti			
	1-01 M	650	2504	1676			
••	1-02 M	2858	3161	2999	←──		
	2-01 M	1603	2356	1426			
	2-02 M	569	1145	1145		1	
	2-05 M	1034	2039	2105			Up to 3
	2-06 M	842	2297	1913			fewer p
	3-11 M	547	1049	1057	←──	٢	than in
	3-12 M	598	1463	1994			sample
	4-01 M	525	1271	1049	← _	J	

Data for Routine Inclusion Assessments

Number of large inclusions

- Large inclusions have generally higher impact on metal properties
- Larger signals are counted
 - Threshold higher than 3σ

Al intensity run-chart and distribution in sample 1-02 M

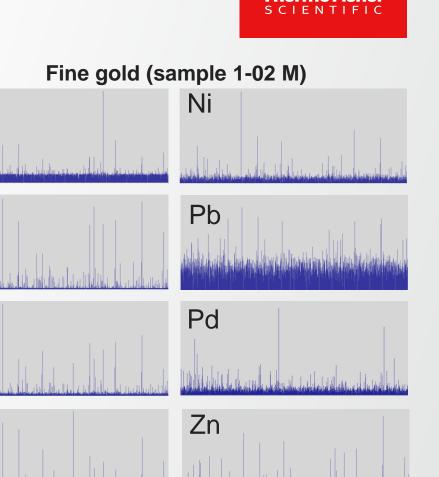

	Number	of larg	e peaks p			
	Sample	AI	Si	Ti		
	1-01 M	52	532	67		
••••	1-02 M	244	429	177		
	2-01 M	178	155	15		
	2-02 M	23	52	37	←]	Up to 7x
	2-05 M	59	185	141		fewer large
	2-06 M	89	303	148	L	peaks than in other
	3-11 M	52	96	67	←	
	3-12 M	52	81	155		
	4-01 M	23	67	30		samples!

hermo

Data for Routine Inclusion Assessments

Inclusion concentration

- Proportional to number and size
 - A mix of the two most critical parameters in term of impact on metal quality



Quick evaluation of the different types of critical inclusions and their quantity !

Potential for Applications in Precious Metals

Applications in Precious Metals

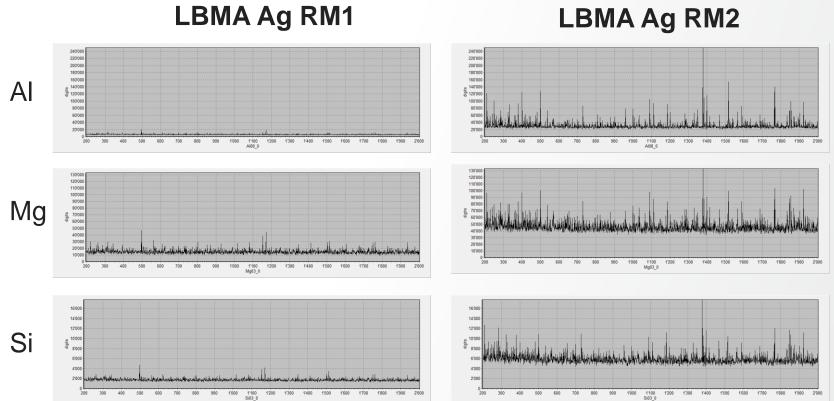
- Potentially, many different inclusions are measurable in all fine precious metals
 - Most of the inclusion elements are detectable, even uncalibrated ones
 - But not the base element
- Inclusion analysis also possible in precious metal alloys
 - Most of the inclusion elements are detectable, even if no calibration at all
 - But neither the base, nor the alloying elements
- Application can be beneficial every time inclusions impact an important property of the metal, e.g.,
 - Visual aspect in jewellery
 - Resistance of small parts in dentistry
 - Conductivity in electronics

Zr

Ag

Cu

Fe


Κ

Mg

Thermo

Applications in Precious Metals

Fine Silver

LBMA Ag RM2

Concluding Remarks

Conclusion

- Ultra-fast inclusion analysis in fine precious metals is possible with the ARL iSpark
- The method developed with MKS PAMP
 - Provides the information needed by MKS PAMP to evaluate inclusions in type, size and quantity
 - Offers MKS PAMP different solutions to guarantee a minimum of critical inclusions in the product delivered to their customers, i.e.,
 - Sorting of the suitable grain lots
 - Optimization of the production process to minimize the inclusion content
 - Implementation of a routine control of inclusions in the process
- Similar applications, capable of controlling inclusions that have a critical impact on product properties, are possible in all types of precious metals!

Thank you

To know more on ARL iSpark and ultra-fast inclusion analysis, visit www.thermofisher.com/oes

Or contact jean-marc.bohlen@thermofisher.com