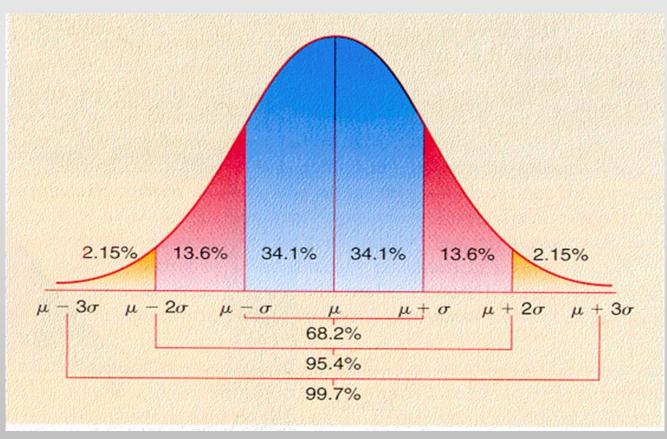

Use and Handling of Uncertainties in Determining Metal Purity by Difference

Michael W. Hinds MHinds Analytical Consulting Inc.


Metal Purity by Difference

- Determine the concentration of 'x' number of elements
- Possible Methods:
 - Solution ICP-OES
 - Spark OES
 - GD-MS
- Sum element concentrations and sum uncertainties
- Subtract the sum of element concentrations from 100% for purity

Uncertainty

A parameter associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand*

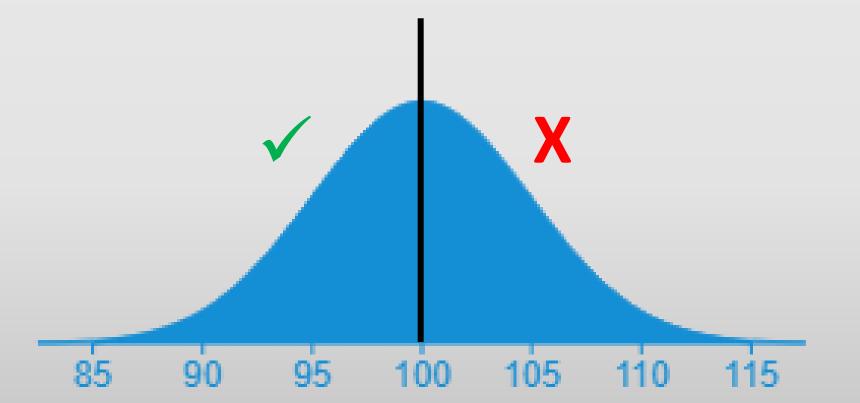
MHinds Analytical Consulting Inc.

*EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement, 3rd ed, 2012

Combining Uncertainties

- Uncertainty expressed as standard deviation
- Cannot directly add standard deviations
- Can combine variances = (Standard Deviation)²
- Combine then take square root for combined uncertainty

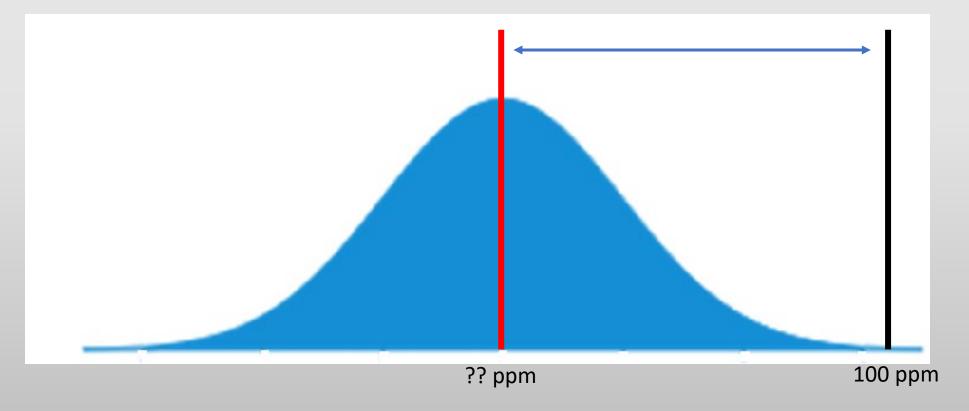
Uncert =
$$\sqrt{\Sigma(var \, iances)} = \sqrt{\Sigma(std \, dev)^2}$$


Simple Example of Combining Uncertainties

Determination of Ag, Cu, Fe, Ni, Pd in Gold, n= 4 replicates

Element	Concentration, ppm	Std Dev, ppm	(Std Dev) ² , ppm ²
Ag	21.3	± 0.7	0.49
Cu	8.4	± 0.4	0.16
Fe	-0.1	± 0.2	0.04
Ni	0.6	± 0.1	0.01
Pd	5.6	± 0.3	0.09
Sum	35.8		0.79

$$Uncert = \sqrt{\Sigma(var \, iances\,)} = \sqrt{\Sigma(std \, dev\,)^2} = \sqrt{0.79 \, ppm^2} = 0.89 \, ppm$$
$$Au\% = 100 - \left(\frac{35.8 \, ppm}{10000 \, ppm\%^{-1}}\right) = 99.99642\% \pm 0.00009\%$$


At 99.99% (100 ppm impurity elements) If assayed 50 times – 25 OK & 25 over limit

Sum of Determined Impurity Elements, ppm

Where to set an Internal Limit for Impurities?

Information to Set Internal Limit for Impurities

- Sampling Uncertainty
 - Calculated from duplicate sample assays
- Measurement Uncertainty
- 99% Confidence Interval (CI)
 - 3(Combined Uncert) @ 99% CI
- Bias
 - Calculated from analysing Reference Materials
- Added Protection (extra buffer)

Sampling Uncertainty (µ_{sampling}) Difference between duplicate samples

- Take difference between sample duplicates (n>20)
- Calculate standard deviation of the differences (s_{Diff})

$$\mu_{Sampling} = \frac{S_{Diff}}{\sqrt{n}}$$

Example: Calculating Sampling Uncertainty (34 replicates)

Sample	Average Dip A n=2	Average Dip B n=2	Difference, ppm
101	82.0	85.0	-3.0
102	71.5	69.0	2.5
103	58.0	58.0	0.0
\checkmark	\mathbf{A}	\checkmark	\mathbf{A}
134	40.0	38.0	2.0

Sum of Impurities in Gold, ppm

$$\mu_{Sampling} = \frac{S_{Diff}}{\sqrt{n}} = \frac{1.4\,ppm}{\sqrt{34}} = 0.25\,ppm$$

Overall Measurement Uncertainty (μ_M **)** Use Au purity values & convert to ppm; Use QC standard

Combine

- Sampling uncertainty; μ_{Sampling}
- Measurement uncertainty of a typical sample (n=4); μ_m
 - Sample homogeneity
- Short Term QC uncertainty use QC data (n=6); μ_{STQC}
- Long Term QC uncertainty use QC data (n >30); μ_{LTQC}

$$\mu_M = \sqrt{\mu_{Sampling}^2 + \mu_m^2 + \mu_{STQC}^2 - \mu_{LTQC}^2}$$

Bias and Safety Factor

• Bias

- Estimation of Inaccuracy
- Element Bias = Determined in Reference Material Certificate Value
- Sum Element Biases
- Safety Factor (Optional) extra "x" ppm
 - Coverage for:
 - Elements not determined just in case
 - Comfort/Peace of Mind

Combining Factors Example Calculation

Factor	Estimate, ppm	Coverage Factor = 3	Totals, ppm
Overall Measurement Uncertainty	3.5	10.5	10.5
Bias	2.0		2.0
Safety Factor	3.0		3.0
Combined Limit			15.5

Combined Factors estimate 15.5ppm \rightarrow Maximum Limit for Impurities = 84.5 ppm

Combined Factors estimate 15.5ppm → Minimum Reporting Limit for Gold = 99.99155%

Concluding Remarks

- Suggested way to estimate minimum reporting limit for high purity Au
- Can use collected data to assess
 - Sampling Uncertainty
 - Overall Method Uncertainty
 - Bias
- Applicable to:
 - high purity Ag and other precious metals
 - 99.5% 99.999%
- Not all uncertainties discussed
 - i.e., calibration uncertainty

Acknowledgements

- Neil Harby
- Alessandro Ruffoni
- Wes Johnson

