

Potentiometric titration according to ISO 11427 Stefan Zorn – Head of Analytical Services – Agosi AG LBMA Assaying and Refining Conference 2023

12.03.2023

This presentation shows

- The influence of oxygen on the standard solution factor for the determination.
- The application of the potentiometric titration for jewellery alloys and precious metal refining
- Limiting the potentiometry by other metals and solvent residues
- Alternative methods of silver determination (ICP-OES).
- Accuracy and robustness of the potentiometric titration

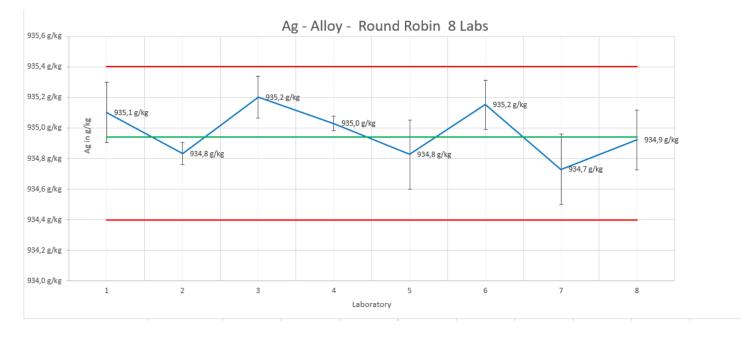
Influence of oxygen in fine silver during potentiometric silver titration according to ISO 11427

The following slides shows the influence of oxygen in the determination of the titer in the potentiometric silver determination according to ISO 11427. The oxygen content of commercially available silver granules is between 100 and 800 ppm. This oxygen content is not taken into calculation when determining the titer of the titration solution. For this reason, internal measurements were carried out here with various fine silver materials.

Simulation of the influence of oxygen by Jonathan Jodry

Simulation the ISO method with 3 different silver proofs :

- Case A : virtually pure silver, containing almost no oxygen
- Case B : typical silver proof containing 80 ppm of impurities and 100 ppm of oxygen (in the ISO new version spec)
- Case C, using silver grains containing lots of oxygen (400 ppm) and the same amount of impurities (out of ISO new version spec)


Simulation of the influence of oxygen by Jonathan Jodry

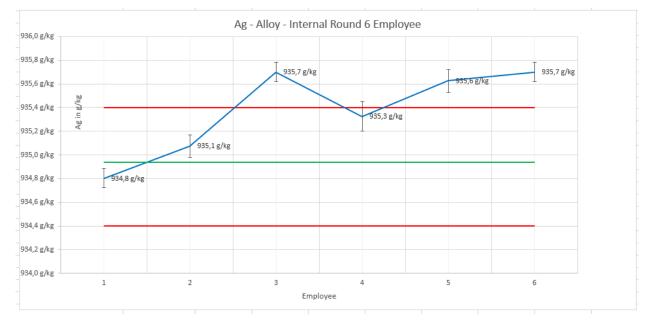
silver proof	Cas	e A	Cas	se B	Cas	se C
metallic impurities	0	ppm	80	ppm	80	ppm
oxygen	0	ppm	100	ppm	400	ppm
real Ag proof fineness =	1000,00	0/00	999,82	0/00	999,52	0/00
m(AgF) =	500	mg	500	mg	500	mg
V(AgF) =	50	mL	49,991	mL	49,976	mL
F =	10		10,0018		10,0048	
sample						
weight =	500	mg	500	mg	500	mg
real fineness =	925	0/00	925	0/00	925	0/00
V(Ags) =	46,25	mL	46,25	mL	46,25	mL
calculated m(Ags) =	462,5	mg	462,5833	mg	462,7221	mg
calculated fineness w(Ag) =	925	0/00	925,1665	0/00	925,4442	0/00

8 different laboratories participated in this round robin test. All laboratories used the same silver (oxygen content < 20 ppm).

The mean value over all laboratories is 934.9 g Ag/kg. The variation was very small.

Internal round robin – Agosi laboratory

An internal round robin was carried out with the same silver alloy, in which the employees used different fine silver materials for the determination of the titer.


Employee 1-2 Silver sheet with < 20 ppm oxygen.

Employee 3-4 Silver granules with approx. 300 - 400 ppm oxygen

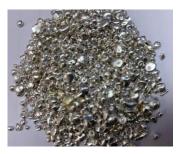
Employee 5-6 Silver granules with approx. 580 - 700 ppm oxygen

Internal round robin – Agosi laboratory

The mean value over all laboratories is 935,3 g Ag/kg.

It can be clearly seen in the results that the oxygen content in the silver, which was not taken into account, led to increased results.

Fine silver materials used for the determination of potassium bromide factor


Titer material 1

Titer material 2

Titer material 3

Silver sheet with < 20 ppm oxygen

Silver granules with approx. 300 - 400 ppm oxygen Silver granules with approx. 580 - 700 ppm oxygen

The two analysis comparisons clearly show the influence of the oxygen content on the determination of the silver in the potentiometric titration. With the silver granules available on the market, the oxygen content cannot be specified exactly. For this reason, wire, sheet metal or stamped pieces should be used when determining the titer of the titration solution.

Jewellery and precious metals — Determination of silver— Potentiometry using potassium bromide

1 Scope

This document specifies a volumetric method for the determination of silver on a material considered homogeneous. The silver content of the sample lies preferably between 100 and 999,0 parts per thousand (‰) by weight. Fineness above 999,0 ‰ can be determined using a spectroscopy method by difference (e.g. ISO 15096).

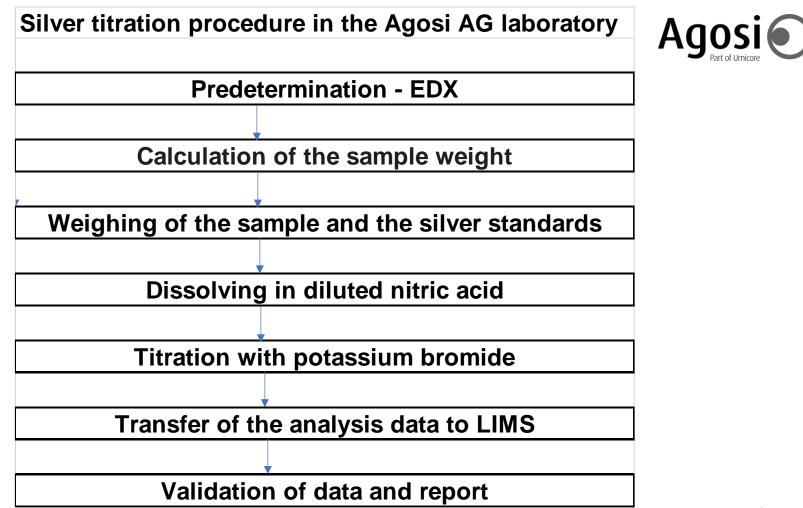
4 Principle

The sample is dissolved in dilute nitric acid. The silver content of the resulting solution is determined by titration with standard potassium bromide solution using a potentiometric indication of the equivalence point.

5.4 Pure silver, minimum purity 999,9 parts by mass per thousand (‰) and with an oxygen content < 100 ppm. The laboratory shall guarantee by analysis or validation that this requirement is meet.

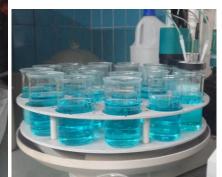
NOTE Silver sheets contain usually less than 100 ppm of oxygen.

The application of the potentiometric titration for jewellery alloys and precious metal refining


For the Agosi laboratory, potentiometric silver determination is a very important analytical method for the determination of silver for:

- 1) Direct production control for analytical control of the silver continuous casting plant.
- 2) Control of the silver content in the alloys produced.
- 3) Determination of the silver content in refining materials for settlement with the customer.

Tools and equipment for efficient work



Stamped silver pieces with different weights. Ag 99.99 % with an oxygen content of < 20 ppm oxygen

4.26,55

Titrator with sample changer for 400 ml beakers

	Stapeleingabe Mehrfach lösche Löschen	en 🚉	Analysenm Markierte f Archivierer	reigeben	ren 🦒	lendede	SPC Rege	111	Zeugnis e		Schnelldr	uck Dr	🚔 🔎	Export Excel (Markierte) Excel (Filter)	E Mitt	
	Ana	ilyse						Bericht					Export			v
illkommen Analysenverwaltung	3															
Q 👔 Rohdaten	, ,	. 💎	ISCHNEL	SUCHE_79085_ZOR	۷ v	Ag-Pot			~							
analytisches LAbor	statnr H	(unde_1	Plantext	bem_ste mat_art	bnetto	Bemuste Ag_1	Ag_2	Ag_3	Ag_4	Ag_M	Bereich	Gerăt	Datum	Bemgew mat_be	2 Typ	FGS
> 🛅 FunkenM8 (Rohdaten)	30074379					619,990	612,610	617,840		616,8133	TR	TI	03.03.202		Merge	
> 🧀 Legierungen	589253					619,990	612,610	617,840		616,8133	TR	TI	03.03.202		Merge	
- 🗀 Neuer Ordner	30074379					619,990				619,9900	TR	TI	03.03.202		Einzelme	35
> - Call RFA (Standard)	> 589966					937,530	937,680			937,6050	TR	TI	02.03.202		Merge	FG
Probierlabor	589966					937,530				937,5300		TI	02.03.202		Einzelme	
 Halbzeug (Standard) 	589859						789,320			789,2900		TI	02.03.202		Merge	FG
Goldlegierungen	589859					789,260				789,2600		TI	02.03.202		Einzelme	
X-Test	589624					875,050	875,430			875,2400		TI	02.03.202		Merge	FG
- 🗀 Scheidgut	589624					875,050				875,0500		TI	02.03.202		Einzelme	
Suchen Rohdaten	589612					938,580	938,540			938,5600		TI	02.03.202		Merge	FG
	589612					938,580				938,5800		TI	02.03.202		Einzelme	
	589606					723,650	723,550			723,6000		TI	02.03.202		Merge	FG
	589606					723,650				723,6500		TI	02.03.202		Einzelme	
	590077						921,640			921,6000		TI	02.03.202		Merge	FG
	590077					921,560				921,5600		TI	02.03.202		Einzelme	
	589618					858,780	859,150			858,9650		TI	02.03.202		Merge	FG
	589618					858,780				858,7800		TI	02.03.202		Einzelme	
	590080					856,590	856,760			856,6750		TI	02.03.202		Merge	FG
	590080					856,590				856,5900		TI	02.03.202		Einzelme	
	590065					846,960	846,770			846,8650		TI	02.03.202		Merge	FG
	590065					846,960				846,9600		TI	02.03.202		Einzelme	
	589600					500,810	501,450			501,1300		TI	02.03.202		Merge	FG
	589600					500,810				500,8100		TI	02.03.202		Einzelme	
	589597						728,060			728,1400		TI	02.03.202		Merge	FG
	589597					728,220	000.000			728,2200		TI	02.03.202		Einzelme	
	589594						802,330			802,2200		TI	02.03.202		Merge	FG
	589594 590101					802,110 932,690	932.400			802,1100 932,5450		TI TI	02.03.202		Einzelme	
	590101					932,690	332,400			932,5450		TI			Merge	FG
	590101						791,570			793,4250		TI	02.03.202 01.03.202		Einzelme Merge	FG
	589138					791,630	/31,5/0					TI				
	589138						700.040			791,6300		TI	01.03.202		Einzelme	
							728,840			728,7850			01.03.202		Merge	FG
	589147 589235					728,730	010 440			728,7300		TI TI	01.03.202		Einzelme	
	569235					316,630	916,440			916,5350	100		01.03.202		Merge	FG

LIMS system for data exchange

Limitation from insoluble silver compounds

For example, silver chloride and silver bromide. These compounds are present in many refining materials. By fuming and boiling with sulphuric acid, these compounds can be converted into silver sulphate and the solution can be titrated.

Limitation of silver determination by other metals and residues

Gold, platinum and other metals prevent the silver from dissolving in nitric acid above certain concentrations. By melting with copper, a dilution is created and the silver can be dissolved and titrated. Insoluble matrix components and base metals are transferred to the slag during the copper extraction melt, so that interfering components (SiO2, Al2O3, Fe...) are not present during titration.

Alternative methods of silver determination (ICP-OES)

As an alternative to potentiometry, an ICP-OES method was developed.

DIN 32562:2022-08

Jewellery and precious metals - Determination of silver in silver alloys - ICP-OES method using an internal standard element

The DIN standard 32562 is to be adopted as an ISO standard. The project has started.

Principle:

The samples are first dissolved in nitric acid and then carefully precipitated with concentrated hydrochloric acid first and then dissolved again.

 $Ag^+ + NO_3^- + 2HCI \rightarrow H[AgCl_2] + HNO_3$

These sample solutions are mixed with an exact amount of internal standard and made up to the measurement volume or final weight.

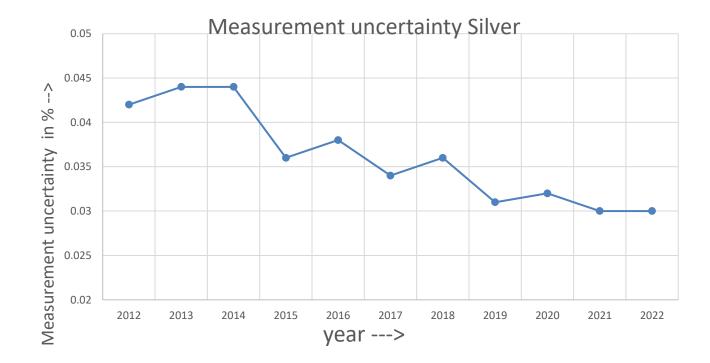
The bracketing method is used for this purpose.

Comparison ICP-OES - potentiometric titration

ICP-OES

Titration

	Ag	Cu	Sn	Zn	total		Ag
Results in	602,0	228,9	29,3	140,2	1000,4	-	602,2
g/kg	602,7	228,7	28,7	139,6	999,7	g/kg	602,3



Comparison ICP-OES - potentiometric titration

	ICP-OES	Potentiometric Titration			
Measurement uncertainty	0,13 %	0,05 %			
Analysis time	1 day	1 hour			
Elements	Multielement determination	Only silver			
Sample preparation	Complex sample preparation	Simple , flexible sample preparation			

Uncertainty of measurement of potentiometric silver titration over the last 10 years

Summary:

Potentiometric titration is characterized by high robustness. The speed, accuracy and cost of the method are not reached by any other determination.

For multi-element determinations and materials that are not directly dissolvable in nitric acid, ICP -OES offers a good alternative.

Thank you for your attention